A ¹⁵N, ¹³C, AND ¹H NMR STUDY OF REACTION PRODUCTS FROM ARYLGUANIDINES AND CHLOROFORMATE ESTERS

Antonín LYČKA" and Karel PALÁT, jr.^b

^a Research Institute of Organic Syntheses, 532 18 Pardubice-Rybitví

^b Faculty of Pharmacy, Charles University, 501 65 Hradec Králové

Received September 3, 1990 Accepted October 6, 1990

The ¹⁵N, ¹³C, and ¹H NMR spectra of the reaction products from arylguanidines with two mols of chloroformate esters have been measured. With application of the corresponding ¹⁵N isotopomer it has been proved that the reaction products have the structures IIIa-IIIo.

Within the attempts at finding alternative pathways to synthesis of substituted arylguanidine dicarboxylates we have used the reaction of the respective arylguanidine $(I, R^1 = H, NO_2)$ with esters of chloroformic acid $(II, R = CH_3, C_2H_5, CH(CH_3)_2, CH_2C_6H_5)$. The reaction was carried out at the interface of two phases (water-dichloromethane), and magnesium oxide was used to maintain the alkaline reaction medium. The products *III* were formed in the reactions without side products, and the yields were relatively high (60-97%). The IR spectra and elemental analyses of the products confirmed that they are bisalkoxycarbonyl derivatives. The alkoxycarbonylations given, of course, can theoretically produce a series of isomers and/or tautomers, as it can be seen in Scheme 1.

The aim of the present work was to identify the compounds obtained by means of ${}^{15}N$, ${}^{13}C$, and ${}^{1}H$ NMR spectroscopy and to verify whether or not they have the same positions of substituents as those in the compounds obtained by the usual reaction of substituted anilines *IV* with dialkyl 2-alkyl-1,3-thioisoureidodicarboxy-lates *V* (Scheme 2). In the compounds *VI* the alkoxycarbonyl groups are bound to the nitrogen atoms N¹ and N² of the guanidine group^{1,2} and the aryl substituent is at N³.

The reaction studied is - in a sense - analogous to the methoxycarbonylation of "cyclic benzoguanidine" - 2-aminobenzimidazole (VII) described by Klopping³ (Scheme 3). This reaction produces dimethyl 2-imino-1,3-benzimidazolinedicarboxylate (VIII), i.e. the substitution takes place at the nitrogen atoms adjacent to the benzene nucleus.

ν

SCHEME 2

N

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

VI

EXPERIMENTAL

The syntheses of compounds IIIa-IIIo (Scheme 1) and results of tests of biological activity are given in ref.⁴. The compound IIIc enriched with ¹⁵N at the N³ position was obtained in the same way as the nonlabelled compounds with application of ¹⁵N-aniline (96%¹⁵N, Isocommerz Berlin).

///	R'	R ²	<i> </i>	R	\mathbf{R}^2
а	н	CH3	i	3-NO2	CH ₂ CH ₃
ь	н	$CH(CH_3)_2$	j	3-NO2	CH(CH ₃) ₂
с	н	CH ₂ C ₆ H ₅	k	3-NO2	$CH_2C_6H_5$
ď	2-NO2	CH3	1	4-NO ₂	CH3
e	2-NO2	CHCH3	m	4-NO2	CH ₂ CH ₃
f	2-NO2	$CH(CH_3)_2$	n	4-NO2	CH(CH ₃) ₂
g	2-NO2	$CH_2C_5H_5$	0	4-NO ₂	CH₂C ₆ H₅
n	3-NC2	CH3			

The ¹H and ¹³C NMR spectra were measured with a Bruker AM 400 apparatus at 400·13 and 100·6 MHz, respectively, in a 5 mm NMR tube at 300 K in a standard way, using 5–10% solutions of the substances in deuteriochloroform. The ¹H and ¹³C chemical shifts are referred to internal tetramethylsilane ($\delta = 0.00$).

The ¹⁵N NMR spectra were measured with a JNM-FX 100 apparatus at 10.095 MHz with natural abundance of the ¹⁵N isotope. At first the measurement was carried out in a 10 mm NMR tube in deuteriochloroform at 300 K with application of the proton-noise decoupling (spectral width 5 000 Hz, 8 k memory, 45° pulse, pulse repetition 3 s). After these measurements, $Cr(acac)_3$ (about 25 mg/ml) was added to the samples as relaxation agent, and the ¹⁵N chemical shifts were measured for the nitrogen atoms not directly bound with protons. The ¹⁵N chemical shifts are referred to external neat nitromethane ($\delta = 0.02$). Positive values of the chemical shifts denote downfield shifts.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

RESULTS AND DISCUSSION

The reaction of substituted phenylguanidines with chloroformate esters has been studied. The elemental analyses of the reaction products show that the reactants react in the molar ratio of 1:2, which leads to the reaction products given in Scheme 1. The ¹H and ¹³C NMR spectra of the reaction products measured in deuteriochloroform give - in accordance with the results of elemental analysis - two sets of ¹H and ¹³C NMR signals for the COOR groups (Tables I and II). On the basis of this information, however, it is impossible to differentiate between the structure given in Scheme 1, since even in compounds with $N(COOR)_2$ grouping the COOR groups are magnetically nonequivalent due to geometrical isomerism at the C = Nbond. In order to prove that the reaction products from arylguanidines and two mols of chloroformate esters correspond to the compounds IIIa-IIIo, we adopted a procedure which will be demonstrated in detail for the case of compound IIIc. The ¹⁵N NMR spectrum of this compound was measured with application of the proton-noise decoupling and rapid pulse repetition (c. 3 s). Thus we obtained a singlet with the ¹⁵N chemical shift of $-288 \cdot 2$ ppm, and in the subsequent measurement of the proton-coupled spectrum this singlet gave a triplet with the coupling constant ${}^{1}J({}^{15}N, H) = 92.8 \text{ Hz}$, which is characteristical of an NH₂ group. This is a very

Compound	NH ₂	H arom	\mathbf{R}^2
IIIa	9·43 ^a	7.13-7.35	3.66, 3.48 (CH ₃)
IIIb	9·40 ^a	7.10-7.30	4.94, 4.42 (CH), 1.09, 1.01 (CH ₃)
IIIc	9·20, 9·50	6.94-7.45	5.07, 4.85 (CH ₂)
IIId	9·45ª	7.28-8.16	3.71, 3.49 (CH ₃)
IIIe	9·40 ^a	7.29-8.11	4.16, 3.85 (CH ₂), 1.05, 1.02 (CH ₃)
IIIf	9·21, 9·54	7.29-8.10	4.99, 4.44 (CH), 1.08, 1.01 (CH ₃)
IIIg	9·17, 9·46	6.998.00	5.08, 4.83 (CH ₂)
IIIh	9·27, 9·48	7.52-8.23	3.73, 3.54 (CH ₃)
IIIi	9·45ª	7.50-8.17	4.19, 3.91 (CH ₂), 1.13, 1.10 (CH ₂)
IIIj	9·37ª	7.50-8.17	4.99, 4.55 (CH), 1.12, 1.05 (CH ₃)
IIIk	9·12, 9·45	7.02 - 8.10	$5.08, 4.88 (CH_2)$
1111	9 ·2 5, 9·45	7.32-8.26	3.73, 3.54 (CH ₃)
IIIm	9·45 ^a	7.33-8.26	4.18, 3.95 (CH ₂), $1.14, 1.14$ (CH ₃)
IIIn	9·41 ^a	7·34-8·23	5.00, 4.57 (CH), 1.13, 1.07 (CH ₃)
IIIo	9.25, 9.45	7.03 - 8.20	5·10, 4·90 (CH ₂)

I ABLE I			
¹ H chemical	shifts (δ , ppm)	in compounds	IIIa-IIIo

^a Broad signal.

T.

Compound	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	6-3	R ²
IIIa	137-4	128-7	128-4	128-0	128-4	128-7	160-9	156-0	164-0	54-0, 52-4
qIII	137-9	128-4	128-4	127-4	128-4	128-4	160-7	155-0	162-9	71-4, 69-1, 21-7, 21-2
IIIc	137.5	128-6	128-5	128-1	128-5	128-6	160-9	155-2	163-4	68·3, 67·1 ^a
PIII	131-7	145-0	125.5	129-5	134·2	131-7	160-0	154-9	163-7	54.5, 52.5
IIIe	131.8	144-9	125-1	129-2	134-0	131-6	159-8	154-2	163-1	63.8, 61.2, 14.1, 13.6
lIIf	132-2	145.3	125-1	129-1	133-8	131-8	160.1	153-9	163-0	72.3, 68.9, 21.3, 21.1
IIIg	131-6	145-0	125-2	129-3	133-9	131-5	160-0	154·2	163·1	69-0, 66-9 ^b
IIIh	138-5	124·2	148-4	123-3	129-6	135-2	160-4	155-2	163-8	54.6, 52.6
IIIi	138-7	124.1	148-1	122-9	129-3	135-2	160-2	154-6	163·2	63.9, 61.2, 14.1, 13.7
IIIj	138-9	124-0	148-0	122-6	129-2	135-2	160.1	154.1	162-7	72.3, 68.6, 21.6, 21.2
IIIk	138.5	124-1	148-2	122-9	129-3	135-0	160-3	154-3	163-1	69-0, 66-9 ^c
1111	143-2	129-9	124·3	147-3	124·3	129-9	160.3	155-0	163-9	54.5, 52.6
IIIm	143-3	129-8	124-0	146-9	124.0	129-8	160.1	154·3	163-1	63.8, 61.6, 14.1, 13.7
uIII	143-7	129-8	123-9	146.8	123-9	129-8	160-2	153-9	162-8	72-3, 68-7, 21-6, 21-2
oIII	143-2	129-8	124·1	147·1	124·1	129-8	160-2	154·3	163·2	69-0, 67-0 ^d

127-5, 127-4, 127-3; ^d 136-6, 134-1, 128-5, 128-4, 128-0, 127-5, 127-4, 127-3.

Arylguanidines and Chloroformate Esters

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

TABLE II

valuable piece of information which excludes the structures B, C, E, and F in Scheme 1. The ¹⁵N chemical shifts of the other two nitrogen atoms were measured after adding the relaxation agent $Cr(acac)_3$ (Table III).

In order to differentiate between the structures A and D, we prepared the N-3. $(96\%^{15}N)$ selectively enriched compound *IIIc*, using the ¹⁵N-aniline in its synthesis. The ¹⁵N isotope has the spin number I = 1/2 and causes splitting of the adjacent carbon signals into doublets. The assignment can be completed on the basis of the coupling constants " $J(^{15}N-3, ^{13}C)$). With respect to the similarity of the coupling constants ${}^{1}J({}^{15}N-3, {}^{13}C-7) = 22.7$ Hz and ${}^{1}J({}^{15}N-3, {}^{13}C-9) = 24.9$ Hz it is evident that the reaction took place at the nitrogen atom N-3, whereas the coupling constant ${}^{3}J({}^{15}N-3, C-8)$ is equal to 5.9 Hz. Other coupling constants ${}^{n}J({}^{15}N-3, {}^{13}C)$ can be observed for the carbon atoms C-1, C-2, C-3, which enables differentiation between the signals of the phenyl groups C_6H_5N and $C_6H_5CH_2$.

In the ¹³C proton-coupled spectrum the carbon atom C—NH₂ ($\delta = 160.9$) gives a broadened singlet, whereas the carbon atoms of carboxylic groups ($\delta = 155.2$ and 163.4) are split into broadened triplets by the influence of the protons of CH_2 group. The signals of the COOCH₂C₆H₅ group were differentiated on the basis of the coupling constant ${}^{n}J({}^{15}N-3, {}^{13}C)$ (vide supra). Their unambiguous assignment was carried out by adopting⁵ the selective INEPT to ascribe the signals of CH₂ groups. The selective excitation of the CH₂ protons with the ¹H chemical shift $\delta = 4.85$ gave the carboxylic group signal with the shift $\delta(^{13}C-8) = 163.4$ in the selective INEPT spectrum. On the basis of the result of selective decoupling, this CH₂ group was ascribed the ¹³C chemical shift $\delta = 68.30$. In a similar way we

N chemical shifts (δ , ppm) in co	emical shifts (δ , ppm) in compounds IIIa, IIIc, IIIk, and IIIm				
Compound	N-1	N-2	N-3		
IIIa		288·8 289·7 ^a	-209.0^{a}		
IIIc	-246.0^{a}	$-288 \cdot 2^{b}$ $-289 \cdot 7^{a}$	209·6ª		
IIIk ^c	-247·5ª	$-288 \cdot 4^{d}$ $-289 \cdot 0^{a}$	-207·3ª		
IIIm		-288.0			

TABLE III

^a With addition of Cr(acac)₃ (25 mg/ml); ${}^{b-1}J({}^{15}H, H) = 92.8$ Hz; ${}^{c}\delta(NO_2) = -12.9$; ${}^{d}{}^{1}J({}^{15}N, H) = 93.0 \text{ Hz}.$

proved the coupling of protons of CH₂ group ($\delta = 5.07$) with the carbon of carboxylic group C-9 ($\delta = 155.2$) and $\delta = 67.1$.

The ¹H and ¹³C NMR spectra of the other derivatives were measured, too. The comparison of ¹³C chemical shifts, especially those of C-7, C-8, C-9 carbon atoms, shows that the structure of reaction product is the same for all the derivatives, which is additionally confirmed by the ¹⁵N chemical shifts of selected derivatives (Table III).

The ¹³C chemical shifts of carbon atoms in 2- and 3-phenyl groups were assigned on the basis of the analysis of two-dimensional H,H-COSY and H,C-COSY spectra⁶, whereas the values of substituent chemical shifts⁷ were used for the 4-nitro derivatives.

The formation of the products IIIa-IIIo, i.e. compounds whose preparation from 3-substituted guanidines involves the acylation at N² and N³ nitrogen atoms, is in accordance with the products of reactions of arginine with usual alkylation reagents which give analogously substituted compounds⁸.

The authors are indebted to Dr M. Souček for valuable discussion.

REFERENCES

- 1. Murray J. A., Dains F. B.: J. Am. Chem. Soc. 56, 144 (1934).
- 2. Wollweber H., Kölling H., Niemers E., Widding A., Andrews P., Schulz H. P., Thomas H.: Arzneim.-Forsch. 34, 531 (1984).
- 3. Klopping H. L.: U.S. 2,933,504: Chem. Abstr. 55, 9431e (1961).
- 4. Palát K. jr., Čeladník M., Daněk J., Varkonda Š.: Cesk. Farm., in press.
- 5. Bax A.: J. Magn. Reson. 57, 314 (1984).
- 6. Ernst R. R., Bodenhausen G., Wokaun A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford 1987.
- 7. Ewing D. F.: Org. Magn. Reson. 12, 499 (1979)..
- 8. Wünsch E. in: *Methoden der organischen Chemie* (Houben-Weyl), (E. Wünsch, Ed.), Vol. 15/1, Chap. 36. Georg Thieme, Stuttgart 1974.

Translated by J. Panchartek.